EQ-90 Group Delay/Amplitude Equalizers

INTRODUCTION

EQ-90 Group Delay/Amplitude Equalizers are used in satellite transmit/receive terminals to compensate for non-linear delay distortions and amplitude slope generated by the satellite, filters, waveguide, or interfacility links. Fully compliant with DOMSAT and INTELSAT/CCIR standards, these units interface readily with the uplink/downlink chain.

FEATURES

- Single or dual channel models
- One Rack Unit (1 RU) size
- 70 or 140 MHz IF
- 6 or 10 group delay sections per channel
- Amplitude slope adjustment
- +15 dB gain
- Interfaces directly with V90, V901, and ARC
- Continuously variable group delay and amplitude slope
- Fully compliant with all DOMSAT and INTELSAT/CCIR standards

DESCRIPTION

The EQ-90 equalizer is a 1RU assembly that can be configured for single or dual-channel operation at 70 or 140 MHz.

Each channel of a dual-channel unit is completely independent of the other, including power supplies and fault/status monitoring capability. The dual-channel unit is a compact, lower-cost alternative to installing two single-channel units.

The number of group delay sections required depends upon the IF bandwidth, channel capacity, and RF carrier frequency. Each channel can have 6 or 10 delay sections. For narrow bandwidth applications, 6 delay sections are generally sufficient, unless the RF carrier frequency is located near the useable transponder band edge.

OPERATION

EQ-90 equalizers offer exceptional flexibility of delay/amplitude response shaping. The equalizer module permits virtually any delay shape within a considerable range of adjustments.

The delay equalizer module has 6 or 10 sections that may be switched in or out of the through-path, with continuously adjustable delay magnitude and frequency (parabolic or linear delay), as well as amplitude/slope correction. For example, two sections can double the delay magnitude. The frequency may be varied to provide flat, "double-humped," true parabolic delay and slope response. It can also be adjusted to provide delay ripple. An amplitude equalizer section provides continuous adjustment for cable amplitude/slope equalization.

EQ90 - Configuration Selection Guide				
	EQ90 -	CHAN ()	IF () ▲	SECTIONS
Channels:	Single Dual	(S) (D)		
IF:	70 MHz 140 MHz	<u>.</u>	(7) (14)	
Sections:	6 Section 10 Section	=	1Hz on	(6) ly) (10)
Examples:	EQ90-S76 is a single channel, 70 MHz, 6 section unit EQ90-D710 is a dual channel, 70 MHz, 10 section unit			

2114 West 7th Street, Tempe, Arizona 85281 USA Voice 1 480 333 2200 Fax 1 480 333 2540 Email sales@comtechefdata.com

EQ-90 Group Delay/Amplitude Equalizers

Input/Output Characteristics

Frequency $70 \pm 18 \text{ MHz}$ $140 \pm 36 \, \text{MHz}$

Level -15 dBm, maximum, single carrier

-18 dBm, maximum, multi-carrier

composite

75 Ohms, unbalanced Impedance Return Loss 20 dB, minimum Connector BNC, female (rear panel) 15 dB, nominal Gain 1 dB compression +8 dBm, minimum 3rd Order Intercept +18 dBm, minimum

Group Delay < 2 ns, all equalizer sections bypassed

Amplitude Adjustment \pm 3 dB, minimum

Amplitude Response Adjustable to \pm 0.15 dB, maximum

Delay Adjustment

70 MHz, $< 15 \text{ ns} \pm 18 \text{ MHz}$, (per section)

to > 40 ns \pm 18 MHz 140 MHz, $< 10 \text{ ns} \pm 36 \text{ MHz}$, to $>30 \text{ ns} \pm 36 \text{ MHz}$

IF Fail Trip Point Fault/Status Output

Type

(1) Sum fail, fail-safe, form "C" relay contact, form "A" relay contact

Approximately -20 dBm output power

Fault IF output level monitor, internal power

supply monitor

Connector 9-pin D male

Primary Power Requirements

Voltage Universal input, 90 to 265 VAC

Frequency 47 to 63 Hz

Power Consumption 15 Watts per channel, nominal

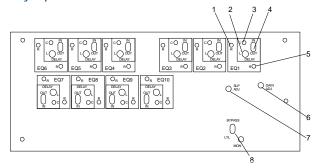
Environmental

Temperature

0 to 50°C (32 to 122° F) Operating Non-Operating -30 to +75°C (-22 to 167° F)

Maximum Altitude

10,000 feet (3,048 meters) Operating Non-operating 40,000 feet (12,192 meters)


Humidity

Operating 0 to 95% (non-condensing) Non-operating 0 to 95% (non-condensing) 1.75 H x 17 W x 20 D inches Dimension

(4.44 H x 48.26 W x 50.80 D cm)

Weight 15lb. (6.8 kg.)

Delay Equalizer Board

Item	Nomenclature	Function
1	R	Used to adjust the amplitude tilt.
2	L	Used to adjust the delay peak magnitude.
3	С	Used to adjust the delay peak center frequency.
4	IN/OUT	Used to insert or remove an equalizer delay section to the signal path.
5	R	Used to adjust the amplitude response.
6	Gain ADJ Potentiometer	Used to set the IF output signal gain (nominally 15 dB).
7	SLP ADJ Potentiometer	Used to provide ±3 dB amplitude slope equalization.
8	BYPASS/LVL MON Switch	Used to activate the IF output signal level monitoring function. The minimum signal level required to avoid an alarm condition is -20 dB. In the BYPASS position, the signal level is not monitored, however a power supply failure will result in an alarm condition.

